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Executive Summary

This deliverable constitutes the first of two deliverables related to Task 2.4, “Analysis of
Innovative Approaches to Market Monitoring.” Here, Deliverable D2.8, “Analysis of
Innovative Approaches to Market Monitoring — Draft 1,” provides an initial analysis of
innovative market monitoring approaches. The subsequent deliverable, D2.9, “Analysis of
Innovative Approaches to Market Monitoring — Final,” will build upon this analysis with
expanded insights and will be delivered in Month 28.

In this analysis, we introduce a digital ecosystem approach to better understand the uptake of
digital and data-driven innovations in agriculture and forestry. Traditional market-based
models often focus solely on buyer-seller interactions and monetary value. In contrast, the
digital ecosystem framework considers a broader network of actors, data flows, and
relationships that shape how innovation spreads and creates value.

The analysis identifies five key actor types: digiproducers, collaborators, digiproduct users,
data intermediaries, and peripheral data users. These actors interact across overlapping
digiproduct and data ecosystems, and span both upstream (e.g., producers, policymakers)
and downstream (e.g., farmers, foresters) segments. Innovations generate social data
externalities, whereby data from one actor benefits others, further extending ecosystem
impact.

To analyse how actors position themselves and interact, the study introduces the concept of
ecosystem space, where strategic activities—termed ecosystem scoping—determine
engagement, needs, collaboration, and role transitions. The PARATA principle (Potential,
Relevant, and Targetable Actors) helps map these dynamics and inform engagement
strategies.

Innovation diffusion is explored through cascading behaviour, social influence, and network
effects. The Bass Diffusion Model is discussed to understand the roles of initial adopters and
imitators in driving uptake. Adoption barriers and enablers are analysed using behavioural
models that account for capability, opportunity, and motivation.

The study also considers innovative monitoring techniques, such as API-based data extraction
and Large Language Models (LLMs), which enable real-time, scalable analysis. Combining
top-down and bottom-up monitoring offers a comprehensive view of adoption dynamics.
Finally, it is shown that forecasting adoption before usage data becomes available is made
possible through intention surveys, analogical reasoning, and cross-ecosystem insights.

Together, these tools and concepts form a new framework for policymakers and stakeholders
to monitor adaptive innovation in digital agri-forestry ecosystems.
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1 Introduction

The growing availability of huge datasets and advancements in computer power have rapidly
accelerated the relevance of digital and data-driven technologies in agriculture and forestry.
These innovations are applied across diverse areas, including farm management information
systems (Tummers et al., 2019), variable rate technologies (Pawase et al., 2023), robotics
(Shamshiri et al., 2018), and controlled traffic farming (Chamen, 2015). Many of these
technologies incorporate artificial intelligence (Al) to support predictive analytics, autonomous
operation, and real-time decision-making (Kamilaris et al., 2017; Wolfert et al., 2017). An
illustrative example is RootWave’s Al-powered eWeeder, which removes invasive plants such
as Giant Hogweed using electrical pulses rather than chemicals. This technology applies real-
time waveform control to boil plant roots while preserving crops and surrounding soil structures
(RootWave, 2023). Such systems demonstrate how digital solutions not only offer functional
value but also represent environmentally conscious alternatives to traditional methods.

By design, digital solutions produce streams of data. These datastreams provide immediate
operational benefits and long-term analytical insights, serving a dual purpose: solving user-
level challenges while generating broader system-level knowledge. For instance, smart
irrigation systems monitor and collect data on water usage, soil moisture, and crop responses.
Analysts can use this data to assess real-world usage patterns, infer levels of adoption, and
detect farmer-led modifications. Similarly, forestry machinery equipped with sensors logs data
on terrain, harvesting frequency, and machine efficiency. These operational datastreams
provide a bridge between the technical implementation of tools and the socio-economic
context in which they are deployed (Kamilaris et al., 2017; Ganeshkumar et al., 2023).

Despite their promise, digital and data-driven innovations in agriculture and forestry lag in
adoption compared to sectors like finance, healthcare, and manufacturing (Ganeshkumar et
al., 2023; Oliveira & Silva, 2023). This underlines the importance for public policymakers and
sector stakeholders to better understand how innovation diffuses across these domains and
what enables—or inhibits—widespread adoption.

Traditionally, innovation diffusion studies have relied on user surveys to measure intentions or
attitudes toward adopting new technologies. Additionally, econometric models have been used
to analyse sales data to infer adoption rates and forecast trends. These methods remain
important (Davis, 1989) but may be inadequate for capturing the full picture from massive data
streams.

Digital and data-driven innovations inherently produce continuous datastreams not only post-
market but also during earlier development stages. These datastreams may contain valuable
information about potential adoption dynamics, such as user engagement during pilot phases
or developer-farmer feedback loops before commercialization. However, the size and
complexity of these data flows pose analytical challenges. Extracting meaningful insights
requires advanced tools capable of filtering noise, identifying patterns, and contextualizing
behavioural signals.
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In this study, we explore how new approaches can improve our understanding of the drivers
and barriers influencing the adoption of digital and data-driven technologies in agriculture and
forestry. To anchor our analysis, we introduce the concept of the digital data ecosystem—a
framework more encompassing than traditional market-oriented views. While markets focus
primarily on transactions between buyers and sellers, a data ecosystem includes a broader
range of actors who generate, use, or are affected by the accompanying datastreams.

To further operationalise our framework, we introduce the concept of ecosystem space, which
captures how actors interact with and derive value from innovation across different stages of
the product life cycle. These ecosystem spaces are not static; they evolve as technologies
mature and adoption spreads. As this evolution unfolds, the nature and intensity of data use
among stakeholders may also shift. By analysing ecosystem spaces specific to agriculture
and forestry, we can identify key indicators of innovation diffusion that embed themselves in
datastreams.

To extract and analyse such indicators from complex and large-scale data environments, we
propose a hybrid approach. This combines traditional methods—such as econometric
modelling and survey-based analysis—with modern tools like Application Programming
Interfaces (APIs) and Large Language Models (LLMs). These digital tools enable the
automated classification of data, detection of relational patterns, and real-time interpretation
of user behaviour and sentiment across the ecosystem.

Our study develops this framework in a structured manner, beginning with the digital
ecosystem, followed by sections on actors, social data externalities, and subsystems. We then
elaborate the ecosystem space and its operationalization, before offering lllustrations from
agri-forestry, examining change along the product life cycle, and exploring innovation diffusion,
barriers and levers, monitoring techniques, and forecasting adoption and collaboration. We
conclude with a synthesis of findings and their implications for ecosystem-based innovation
policy and practice.
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2 The Digital Ecosystem

The evolution of digital and data-driven innovations, along with their resultant data streams,
can be examined through various lenses. For example, economists may approach innovations
by analysing their impact on market structures; sociologists may examine how new data-driven
technologies affect power dynamics; technologists may concentrate on the challenges related
to system interoperability; jurists may address issues of regulatory compliance; etc. For policy
makers who must navigate these diverse perspectives, there is a need for flexible terminology
that can accommodate various viewpoints, enabling them to effectively harness collective
expertise and research findings (see, among others, Ostrom, 2009; Saltelli et al., 2020).

In this study, we use the concept of a digital ecosystem as our point of departure. A digital
ecosystem is a distributed, adaptive, and open socio-technical system characterised by self-
organization, scalability, and sustainability (Briscoe & De Wilde, 2006; Nachira et al., 2007;
Tan et al., 2020). It consists of diverse actors, such as users, developers, and intermediaries,
who collaborate within a shared technical environment and depend on one another for value
creation through data exchange, platform access, innovation, and infrastructure.

We argue that the term “digital ecosystem” is well-suited to describe the dynamics we observe.
The actors involved engage in a wide range of interactions—such as data sharing, co-creation,
and mutual learning—and often shift roles across contexts, for instance from data providers
to users, or from collaborators to regulators, depending on the type of value being created. In
contrast, alternative terms like “digital economy” may be too limited for capturing these fluid,
multi-dimensional relationships. While a digital economy perspective is valuable in contexts
where monetary exchange, pricing, and competition are central, it may overlook important
non-monetized drivers and barriers that significantly influence impactful innovation.

In this respect, a case in point is the Solow Paradox: “You can see the computer age
everywhere but in the productivity statistics” (Solow, 1987). This paradox illustrates that
advancements in digital technologies may have limited reflection in traditional economic
indicators, such as productivity or return on investment (ROI) (Brynjolfsson & Hitt, 1998;
Brynjolfsson, Rock, & Syverson, 2017).

This is not necessarily due to a lack of effect, but rather because traditional indicators overlook
intangible, relational dynamics, such as knowledge flows, data externalities, and network
effects, that are critical for long-term new digital-product success.

We apply the concept of a digital ecosystem to agriculture and forestry, where technology and
data integration are gaining momentum. Tools like milking robots, drone-based crop
monitoring, and autonomous harvesters now serve as both machine and data sources,
capturing real-time environmental and operational variables. These innovations optimise
processes while generating continuous data streams that support efficiency and sustainability.
For example, unmanned aerial vehicle (UAV)-based spectral data, combined with satellite and
ground sensors, can assess crop vigor or detect disease at early stages, while light detection
and ranging (LiDAR) in forestry informs sustainable logging and replanting (Primicerio et al.,
2012; White et al., 2016).
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The main message of this section for the 4Growth project is:

e Leverage the innovative concept of a digital ecosystem to study the uptake of
digital and data-driven innovations, as it offers a more effective framework for
capturing relevant indicators.
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3 Actors in the Digital Ecosystem

The following typology outlines actors related to a digital or data-driven innovation within a
digital ecosystem. They are visually represented in Figure 1.

Digiproducers. These actors develop new digiproducts, often by integrating data into physical
innovation processes. For example, a precision agriculture startup developing Al-driven crop
monitoring drones that use satellite and sensor data to optimise fertilizer use.

Collaborators. These include partners who contribute data, technology, or know-how along
the product life cycle. Their collaboration supports innovation by providing essential inputs.
For example, a weather data provider or soil sensor manufacturer supplying real-time data
that feeds into a farm management platform.

Digiproduct users. These adopt and apply digiproducts in their operations. Their
engagement is essential for validating utility, driving scale, and creating application-level value.
For example, a vineyard manager using a digital disease prediction tool to plan fungicide
application.

Data intermediaries. These collect, process, and distribute data between actors. They
facilitate access, standardization, and trust in data exchange. These actors collect usage and
performance data from technology users—often in exchange for insights, services, or platform
access. For example, exchange platforms that aggregate farm data from various sources and
make it accessible under standardised data-sharing agreements, for example, AgriGaia
(Fraunhofer, 2023) or AgriDataSpace (AgriDataSpace, 2024).

Peripheral data users. These use data without being directly involved in the original
digiproduct’s creation or purchase (e.g., regulators, researchers, third-party service providers).
They generate insights, ensure compliance, or create complementary value. For example,
agricultural policy analysts using farm-level production data to shape subsidy programs, or
NGOs assessing forest health using open-source satellite data.

ce® @ @

Digiproducers Collaborators Digiproduct users Data intermediaries Peripheral data users

Figure 1 Actors in the data economy

The main message of this section for the 4Growth project is:

¢ Expand the scope of relevant actors beyond just digiproducers and digiproduct
users by including collaborators, data intermediaries, and peripheral data users.
This broader perspective, grounded in the innovative concept of a digital
ecosystem, provides a more comprehensive understanding of the uptake of
digital and data-driven innovations.
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4 Social Data Externalities in the Digital
Ecosystem

Social data externalities may play a pivotal role in the adoption of digiproduct innovations and
the accompanying data generation.

Individual-level data often holds value beyond its original source. Because individuals in
similar environments or with comparable behaviours tend to act alike, one person’s data can
yield predictive insights about others—a phenomenon known as social data externalities
(Bergemann et al., 2021). These occur when the data generated by one actor indirectly
benefits others, often unintentionally.

In agriculture, for instance, when a farmer adopts a pest detection tool, the system may identify
outbreak patterns that trigger alerts for neighbouring farms—even if they haven’t contributed
data themselves (Bronson & Knezevic, 2016). Similarly, aggregated data from foresters using
climate-adaptive planting tools can inform regional policy or ecosystem planning (Carbonell,
2016). Robotic weeders and soil sensors also generate externalities by supporting collective
decisions in conservation, nutrient management, and risk mitigation (Eastwood et al., 2019).

These spillover effects enhance the overall utility of digiproduct innovations. For example,
analysing technology adoption patterns—such as precision irrigation or automated milking—
helps suppliers refine pricing, timing, and targeting strategies. Equipment-as-a-service
platforms can further optimise their business models using initial adopter data to adjust
subscription tiers or forecast regional demand (Rotz et al., 2019). A visually representation is
presented in Figure 2.

Figure 2. Social data externalities
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The main message of this section for the 4Growth project is:

e The phenomenon of social data externalities shows why the uptake of digital and
data-driven innovations affects more actors than just the direct, physical users of
the innovation. It is therefore fair to state that a digital and data-driven solution
has a broader impact on the agriculture and forestry sectors than simply meeting
the needs of its immediate users.
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5 Subsystems of the Digital Ecosystem

In this study, we consider two types of subsystems within the digital ecosystem: digiproduct
and data ecosystems, and upstream and downstream ecosystems.

5.1 The digiproduct and data ecosystems

Within the digital ecosystem, we distinguish between the digiproduct ecosystem and the data
ecosystem. These subsystems may overlap, as actors can participate in multiple
subsystems simultaneously or shift between them over time. Such shifts often depend on the
specific context or perspective—whether economic, social, legal, or otherwise. For instance,
an actor may perform as a data intermediary in one setting while functioning as a digiproduct
innovator in another. We believe that understanding these dynamic roles and overlaps is
crucial for analyzing how value is created, exchanged, and regulated within complex, multi-
actor digital environments.

A digiproduct ecosystem revolves around a digitalised product or service —a physical or
analogue offering enhanced with digital technologies to enable data collection, interaction, and
value creation through connectivity, intelligence, or integration (Porter & Heppelmann, 2014;
Raff et al., 2020; Tan et al., 2020). Digiproduct users decide which technologies to adopt, while
developers and manufacturers (innovating producers) supply innovations that aim to fully align
with user-specific needs. Product success depends on criteria, such as usability, perceived
benefits, and low integration costs.

On the other hand, a data ecosystem is a dynamic network of actors who generate and use
data to create value (Oliveira & Ldscio, 2018; Heinz et al., 2022; Lnenicka et al., 2024).
Commonly, value arises not from raw data, but from its combined use to inform decisions,
customise services, and drive innovation. Data intermediaries are central, enabling data to be
shared for benchmarking or decision-making, or sold to innovators for product development,
marketing, or personalization.

5.2 Upstream and downstream ecosystems

The dynamics of ecosystems are shaped by upstream and downstream actors (Molner et al.,
2019). Successful innovation goes beyond technical skill, requiring engagement with
upstream partners—such as universities, research institutes, and patent offices—to align with
emerging technologies and standards (Adner, 2006). Simultaneously, innovators must
understand downstream user needs to ensure relevance and adoption (Teece, 2018).
Neglecting upstream trends like data-driven advances may result in missed opportunities,
while ignoring user demands can lead to market failure. Effective innovation thus depends on
finetuning between technological frontiers and real-world applications.

Upstream ecosystems include actors that provide foundational technologies, resources, and
expertise. In digiproduct ecosystems, these may be universities, manufacturers, test labs, and
component suppliers (e.g., sensors, software, valves), who ensure technical viability,
interoperability, and scalability. In data ecosystems, upstream actors include software
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developers, data scientists, analytics providers, and cloud infrastructure firms. These
stakeholders create the platforms, standards, and algorithms that underpin secure, reliable,
and interoperable data sharing (Lindgren et al., 2021). Their collaborative input is essential for
shaping innovations that are future-proof and integrated into broader system architectures.

Downstream ecosystems consist of users and decision-makers who evaluate and apply
innovations. In digiproduct ecosystems, this includes farmers, foresters, agribusinesses, and
public agencies whose choices determine market success. Their feedback informs upstream
design and adaptation. In data ecosystems, downstream users engage with tools such as
dashboards, decision-support systems, and farm management apps. Their trust in the
quality, usability, and contextual relevance of data is critical for effective uptake (Carboni et
al., 2021). Ultimately, downstream engagement shapes both the adoption trajectory and the
realised value of innovation.

An overview of these ecosystems is provided in Figure 3.

Actors that develop foundational
components and capabilities of an
innovation

digiproduct

data ecosystem
ecosystem

I

Innovation

Downstream
ecosystem

AeilinEileEsee Users and decision-makers who
adopt and apply innovations

Figure 3. The subsystems of the digital economy

Cooperatives

Public agencies
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The main messages of this section for the 4Growth project are:

e Digital ecosystems are composed of interconnected and overlapping
digiproduct and data ecosystems. Understanding these subsystems helps
explain how value is created and exchanged through both digital products and
data flows, with actors shifting roles across subsystems.

e Innovation success depends on the interaction between upstream and
downstream ecosystems. Upstream actors (e.g., universities, developers,
infrastructure providers) contribute foundational technologies and standards,
while downstream actors (e.g., farmers, foresters) determine adoption through
their needs and feedback.
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6 The Ecosystem Space

In this study, we introduce the concept of ecosystem space to describe the specific
configuration of linkages through which the innovation potential of digital and data-driven
technologies is realised. These linkages can include formal partnerships, informal knowledge
flows, regulatory connections, and market relationships that together shape how actors
interact with one another and with technological developments. Closely related to this is the
concept of ecosystem scoping, which refers to the strategic activities undertaken by actors
to explore, shape, and position themselves within these configurations. These activities
include identifying relevant collaborators, anticipating competitive dynamics, adapting to
regulatory frameworks, and influencing standards and norms (Jacobides et al., 2018; Adner,
2006).

Our approach builds on the work of Molner et al. (2019), who proposed the notions of market
space and market scoping to analyse how emerging technologies develop within market
contexts. In their framework, market space reflects the institutional and structural environment
where economic transactions take place, while market scoping describes how actors seek to
define their roles and opportunities within it. We adopt this foundation but extend the scope to
include non-monetary forms of value—such as data access, reputational influence, and
knowledge exchange—that are increasingly relevant in digital ecosystems. As such, market
space is reframed as ecosystem space, and market scoping becomes ecosystem scoping

Ecosystem scoping, by definition, is actor-dependent. That is, the structure and boundaries of
an actor’s ecosystem space are determined from their particular perspective, which is shaped
by their goals, resources, and institutional constraints. For instance, sector regulators
operating under European Union policy frameworks may engage in ecosystem scoping by
identifying targetable digiproducers—actors that develop digital or data-driven solutions
aligned with strategic policy goals such as environmental sustainability or data sovereignty.
These regulators may use mapping tools, industry networks, or public datasets to determine
which producers warrant investment, support, or compliance monitoring (Jacobides et al.,
2018; Klerkx & Begemann, 2020).

From the perspective of digiproducers themselves, however, ecosystem scoping may unfold
differently. Producers are unlikely to conceptualise their peers as "targetable" but instead
categorise them as competitors or collaborators, depending on the nature of the innovation
and their strategic positioning. The act of identifying others in the ecosystem is thus filtered
through a lens of competitive intelligence, risk management, and innovation opportunity.
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The main messages of this section for the 4Growth project are:

e Leverage the innovative concept of an ecosystem space to understand the
networked environment in which digital and data-driven innovation unfolds,
because it is therefore essential for identifying innovation potential within an
ecosystem.

e Use the innovative concept of ecosystem scoping to study the strategic
activities of actors when they define their position and relationships within their
ecosystem space. Unlike traditional market scoping, these activities may also
incorporate non-monetary forms of value like data access and knowledge
bases.

e Be aware that ecosystem scoping is highly actor-specific, meaning that
different actors perceive and shape their ecosystem in different ways. This
calls for policy tools that support diverse scoping strategies across different
actor perspectives.
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7 Operationalization of Ecosystem
Scoping

The actor-centric variation also influences how ecosystem scoping is operationalised.
Regulators may rely on databases, compliance frameworks, and standardised indicators,
while producers may use informal networks, market intelligence, or proprietary tools.
Furthermore, actors’ scoping strategies evolve as products move through different stages of
the innovation lifecycle—from conceptualization and prototyping to market launch and
diffusion. At each stage, new actors emerge, and the configuration of the ecosystem space
shifts accordingly. This dynamism underscores the need to monitor not only adoption rates or
market penetration, but also changes in ecosystem configuration over time (Goémez-Limén et
al., 2022).

To identify promising configurations, actors may use a sizing principle. A widely applied
framework in monetised settings is the TAM—SAM-SOM model, which segments opportunity
from broad potential to narrow feasibility (McKinsey & Company, 2014; Cooper & Vlaskovits,
2010). In this classification, the Total Addressable Market (TAM) represents the maximum
revenue opportunity; the Serviceable Available Market (SAM) reflects what is realistically
addressable; and the Serviceable Obtainable Market (SOM) defines what can be realistically
captured given constraints.

We adopt this scaling logic—but shift the focus from monetised segments to engagement
segments. Applied to digital ecosystems, we distinguish three levels: Potential Actors (PA),
Relevant Actors (RA), and Targetable Actors (TA). This results in, what we propose to call, the
PA—RA-TA (PARATA) principle. To our knowledge, this is the first application of such a sizing
principle to ecosystem engagement. In Figure 4, we graphically depict the PARATA principle.

Targetable Actors can be further categorised into innovating and imitating actors, based on
their mode of engagement in digital or data-driven innovation. Understanding the distinction
between innovating and imitating actors is crucial for analysing the long-term dynamics of the
adoption process (Bass, 1969).

Innovating actors become engaged on their own initiative, without being influenced by peer
behaviour. They may enhance digiproducts or data infrastructure by sharing expertise, offering
feedback, or co-developing features. For example, a forestry cooperative may refine a
biodiversity tracking app by contributing field data and collaborating with developers to
improve functionality (Ostrom, 1996; von Hippel, 2005).

Imitating actors adopt innovations after observing peer behaviour. Though not drivers of
innovation, they play a vital role in scaling and diffusion within the ecosystem. For instance,
smallholder farmers may adopt smart irrigation systems after witnessing positive outcomes on
neighbouring farms (Rogers, 2003; Ghadim et al., 2005).
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Figure 4. The PARATA hierarchy

The main messages of this section for the 4Growth project are:

o Apply the innovative PARATA principle to distinguish between Potential Actors
(PA), Relevant Actors (RA), and Targetable Actors (TA). This framework helps
identify who could engage, who should engage, and who can realistically be
influenced or supported by the focal actor. The PARATA principle is inspired by
the TAM—SAM-SOM model but adapted to ecosystem engagement rather than
market sizing.

¢ Distinguish between innovating and imitating actors, as they play different
dynamic roles in the uptake of innovation within an ecosystem. Innovating
actors often proactively initiate and co-develop solutions, whereas imitating
actors adopt innovations after observing their success.
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8 lllustrations of Digital Ecosystem
Spaces in Agri-Forestry

This section presents illustrations of digital ecosystem spaces, including upstream and
downstream linkages—within and between digiproduct and data ecosystems—through
which innovation potential is realised in agriculture and forestry (see figure 5).

Upstream ecosystem

Upstream digiproduct Upstream data
ecosystem ecosystem

T1f 11

v v ¥
Data bridges

l——
l——

A V. y.

Downstream data
ecosystem

Downstream ecosystem

Figure 5. Data linkages across the different subsystems of the digital ecoystem

8.1 Bridging upstream and downstream in the
digiproduct ecosystem

Data flows generated by digital technologies may connect upstream and downstream actors
within the digiproduct ecosystem. Take, for example, an automated milking robot: while
designed to streamline farm operations, it also collects data on animal health, milk yield, and
equipment performance. This information is relayed to upstream actors, such as digiproduct
developers and test labs, who can use it to refine the milking robot and its hardware based on
real-world usage (Eastwood et al., 2016). Such feedback loops enable continuous innovation
driven by end-user environments. Similar dynamics apply to robotic harvesters (e.g., the White
Shark series) and unmanned aerial vehicles (UAVs) used for precision spraying. These tools
collect valuable operational data that can lead to design improvements, such as enhanced
sensor calibration for sloped terrain or more accurate canopy mapping in orchards (Zhang &
Kovacs, 2012; Pedersen et al., 2018). These examples illustrate how field data informs
iterative innovation across the ecosystem. A visual representation is presented in Figure 6 and
7.
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Figure 6. Bridging Upstream and Downstream in the Digiproduct Ecosystem

Upstream digiproduct
ecosystem

Milking robot

technology

Improves T |
- Data on animal health,

productivity,

 — equipment usage Improves

L J
Generates

Downstream
digiproduct ecosystem

( On-farm milking

robot

Improves

'

Herd management

Figure 7. Data bridges: milking robot
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8.2 Bridging upstream and downstream in the
data ecosystem

In the data ecosystem, upstream actors—including cloud infrastructure providers, analytics
developers, and research institutions—create the essential frameworks and tools for storing,
processing, and sharing agricultural and forestry data. For example, startups developing
machine learning models for crop disease detection collaborate with infrastructure providers
for data storage, model training, and computational capacity (Kamilaris & Prenafeta-Boldu,
2018).

Downstream, actors such as farmers, agronomists, cooperatives, regulators, and researchers
apply these insights in practical decision-making. Farm Management Information Systems
(FMIS) exemplify this connection, integrating data from sensors, UAVs, and agricultural robots
to generate actionable intelligence through dashboards and analytics tools (Liakos et al.,
2018). These platforms also return aggregated and anonymised trends to upstream
developers, enabling iterative improvements. Forestry decision support systems (DSS), like
EFISCEN (European Forest Information Scenario model) and C.A.F.E. (Carbon Accounting
and Forestry Evaluation), further demonstrate how field-level data can inform regional and
continental planning, emphasizing the need for participatory data sharing and cross-scalar
integration (Arets et al., 2011; Cimini et al., 2013).

Here, the data bridge is as follows: it translates field-level inputs into decisions for downstream
users while simultaneously informing upstream development about performance, user needs,
and context-specific challenges. A visual representation is presented in Figure 8 and 9.

Figure 8. Bridging Upstream and Downstream in the Data Ecosystem
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Figure 9. Data bridges: crop disease detection model

8.3 Bridging upstream in digiproduct and data
ecosystems

Innovative digital and data-driven production requires close coordination between digiproduct
developers and data system providers. For example, precision sprayer developers must
collaborate with data engineers to ensure that sensor outputs are accurately captured,
transmitted, and analysed in real time (Liakos et al., 2018). A more complex case is the
SpectroFood platform, which integrates imaging spectrometry for post-harvest quality
assessment. This required alignment among camera manufacturers, spectral calibration
specialists, and cloud-based analytics providers to deliver reliable, real-time insights
(Tsouvaltzis et al., 2021). In such systems, data functions as a critical bridge—linking physical
devices with the digital infrastructure that enables performance monitoring and decision
support. Shared datasets allow upstream actors, including both hardware and software
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developers, to coordinate development, promote interoperability, and create integrated
solutions tailored to end-user environments (Walter et al., 2017). A visual representation is
presented in Figure 10 and 11.

Figure 10. Bridging Upstream in Digiroduct and Data Ecosystems
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Figure 11. Data bridges: Precision sprayer development

8.4 Bridging downstream in digiproduct and
data ecosystems

Farmers, technology developers, regulators, and researchers may be interconnected through
mutual interests and policy agendas. Farmers, as digiproduct users, generate real-time data
using precision agriculture tools such as soil sensors, drones, and farm management
platforms. This data not only supports immediate decision-making but also feeds back to
developers, who refine digital tools based on real-world performance (Liakos et al., 2018).
Simultaneously, regulators increasingly rely on these data streams—often aggregated and
anonymised—to inform sustainability policies and compliance mechanisms. For instance, on-
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farm data about pesticide use, carbon emissions, or nutrient management is used to support
evidence-based policy design (OECD, 2019).

This interaction is not unidirectional. Regulatory frameworks influence which practices are
adopted on the ground, while innovations at the farm level can challenge regulatory
assumptions or highlight the need for updates. Cooperatives may act as intermediaries,
providing collective datasets that help shape regional policies, such as soil health monitoring.
These policies, in turn, stimulate the development of new sensing technologies or data
platforms. This creates a continuous feedback loop where policy, innovation, and practice co-
evolve—driving adaptive governance in agri-food systems (Klerkx & Begemann, 2020). For
example, adoption of cloud-based farm dashboards in Galicia and Flanders spurred
improvements in visualization tools for winegrowers and livestock farmers (Lajoie-O'Malley et
al., 2020). A visually representation is presented in Figure 12 and 13.

Figure 12. Bridging Downstream in the Product and Data Ecosystems
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Figure 13. Data bridges: Irrigation advice mobile app and drought-resistant seed variety
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9 Along the Product Life Cycle

As innovations in digital ecosystems evolve, ecosystem scoping has to account for shifting
actor roles along this evolution. Indeed, actors engage in diverse activities—such as data
sharing, co-creation, and feedback loops—and may switch roles depending on context,
moving from user to provider or from collaborator to regulator (Jacobides et al., 2018).
Understanding the stage of an innovation’s life cycle is therefore crucial, as it influences data
user engagement, adoption dynamics, and the type of ecosystem support needed (Moore,
1996).

In early stages of development, upstream actors may play a central role and feedback from
pilot users may be essential to refining technologies. For example, early-stage testing of Al for
strawberry ripeness involved close collaboration between data scientists and farmers to
calibrate visual thresholds and harvesting logic (Kamilaris & Prenafeta-Boldu, 2018).

In contrast, in mature phases, cross-network feedback loops, e.g., from downstream product
use to upstream data refinement, may reveal new use cases and latent demand. Such
information commonly guides further integration, stimulates innovation, and signals where
policy or interoperability support is needed (Klerkx & Begemann, 2020). So, ecosystem
scoping is recommended to evolve along the PLC.

The Product Life Cycle (PLC) describes the progression of a product from initial development
to market decline. It typically comprises two management perspectives: product-life-cycle
engineering, which covers stages from concept to market readiness, and product-life-cycle
marketing, which focuses on stages from market entry to eventual phase-out. Understanding
the PLC is vital for guiding strategic decisions, optimizing investments, and aligning innovation
efforts across the product’s lifespan (Kotler & Keller, 2016).

When dealing with technological innovations (to which most of the digital and data-driven
innovations belong), the PLC can be complemented by Technology Readiness Levels
(TRLs)—a nine-level scale used to assess technological maturity, from basic research (TRL
1) to full market deployment (TRL 9). Originally developed by NASA and now widely applied
across sectors—including agriculture, forestry, and food systems—TRLs help manage
innovation pipelines, reduce risk, and align development efforts with commercial timelines
(Mankins, 1995; OECD, 2017).

As technologies advance through the PLC, ecosystem scoping strategies must also evolve.
In early phases (TRL 1-3), scoping is commonly exploratory: partners, markets, and use cases
are often undefined. As innovation matures, scoping becomes more targeted, focusing on
identifying relevant actors, building relationships, and aligning infrastructure. Molner et al.
(2019) emphasis

that successful innovation requires dual attention to both market demand and supply-side
collaboration.
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Stages of the Product Life Cycle and Associated TRLs

Conception Phase (TRL 1-3): In this stage, basic research occurs. TRL 1 involves identifying
fundamental principles; TRL 2 includes concept formulation; and TRL 3 tests initial feasibility,
such as early lab work on sensing technologies for crop monitoring.

Design Phase (TRL 4-6): The technology progresses into lab validation (TRL 4), testing in
relevant environments (TRL 5), and demonstration in simulated field conditions (TRL 6). For
example, prototypes of Al-based harvesters may be field-tested in controlled orchard plots
(Kamilaris & Prenafeta-Boldu, 2018).

Product Realization (TRL 7): Here, the system is built and demonstrated in operational
settings. Manufacturers begin scaling production and establishing value chains.

Market Entry (TRL 8): The product is certified and launched commercially. Focus shifts to user
adoption, pricing, distribution, and performance feedback.

Market Growth (TRL 9): The technology sees wider adoption and integration into operational
routines. Data from users feeds back into iterative updates and support services.

Market Maturity (TRL 9): Market saturation sets in, competition intensifies, and strategies shift
to differentiation, cost efficiency, and retention.

Market Saturation/Decline (TRL 9): Demand slows due to competing innovations or shifting
needs. Companies may phase out the product or invest in complementary upgrades to extend
lifecycle value.

The main message of this section for the 4Growth project is:

¢ Recognise that actors may transition between roles—such as from peripheral
data user to collaborator—depending on their own innovation phase and that of
the other ecosystem actors they interact with.
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10 How Innovation spreads in an
Ecosystem

10.1 Cascading behaviour

Individual decisions in ecosystems can lead to cascading behaviour, where people
sequentially update their choices based on both personal beliefs and the observed actions of
others. Easley and Kleinberg (2010, p. 878) describe this dynamic as a process in which a
default behaviour is altered by a small group of initial adopters who switch to a new behaviour
they perceive as superior. Their decision can influence connected individuals, who may in turn
adopt the new behaviour, potentially triggering a broader cascade. Whether this cascade
continues or halts depends on the ecosystem structure, the positioning of the initial adopters,
and the behavioural thresholds of others in the ecosystem.

Cascades are more likely in tightly connected or clustered ecosystems, especially when social
influence outweighs individual information (Centola, 2010). Empirical studies in areas such as
online product adoption, social media trends, and sustainable practices demonstrate how
diffusion is shaped by both peer influence and ecosystem architecture (Aral & Walker, 2012;
Centola et al., 2018). Such insights help explain how new behaviours, ideas, or technologies
gain momentum (or stall) within social systems.

Two underlying dynamics that help to explain the influence on connected actors in a
digiproduct ecosystem include social effects and network effects.

10.2 Social effects

In the relevant literature, social effects are also referred to as internal effects. Easley and
Kleinberg (2010, p. 872) point out that our understanding of behavioural cascades builds on
foundational work in the sociology of innovation diffusion. A seminal study by Ryan and Gross
(1943) examined how farmers in lowa adopted hybrid seed corn. While initial awareness often
came from salesmen, the decision to adopt was primarily influenced by observing neighbors'
successful experiences. This person-to-person transmission of behavioural cues remains
central to contemporary diffusion research. More recent studies confirm that social learning,
peer influence, and perceived social proof strongly shape adoption decisions, from agricultural
technologies to digital tools (Centola, 2010; Valente, 2012; lyengar, Van den Bulte, & Valente,
2011).

10.3 Network effects

Network effects arise when the value of a product or service increases with the number of
users. For example, in a digital equipment-sharing platform, each additional user not only
broadens the pool of tools but also adds usage data that helps optimise resource allocation,
hence, boosting value for all participants (Koutroumpis et al., 2020). Similarly, forestry
decision-support systems become more accurate as more users contribute real-time data on
soil and weather, improving sustainability outcomes over time (Ingram & Maye, 2020). These
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dynamics create positive feedback loops, where growing participation enhances utility, and
consequently, attracting further adoption. This self-reinforcing pattern, rooted in the
foundational work of Farrell & Saloner (1985, 1986) and Katz & Shapiro (1985, 1986), is
central to understanding platform success and market dominance. Cooperative agri-platforms
that integrate data pooling with collaborative services generate compounding benefits—
improving functionality as both users and data grow. This synergy accelerates innovation
diffusion and enhances decision-making across agricultural ecosystems (Bronson & Knezevic,
2016; Klerkx et al., 2019; Eastwood et al., 2021).

In real-world agri-forestry ecosystems, we observe that behavioural cascades often start with
trusted intermediaries such as farm advisors, cooperatives, or Living Labs. These actors play
a critical role in reducing uncertainty around new digiproducts by facilitating demonstration
events where initial adopters showcase the practical value of innovations such as, for
example, electric weeders (eWeeders), farm management information systems (FMIS), and
drone-based crop monitoring. These peer-led demonstrations create observable success
stories that may influence others’ perceptions and lower the threshold for adoption (Labarthe
& Laurent, 2013; Schut et al., 2019). Living Labs may function as collaborative platforms where
farmers, researchers, and ag-tech developers co-create and validate innovations under real-
world conditions (Ballon et al., 2018). Empirical studies have shown that such embedded
social learning environments increase trust, may accelerate diffusion, and help innovations
scale beyond initial adopters (Klerkx et al., 2019; Bacco et al., 2022).

10.4 Bass diffusion model

One of the most widely used tools for modeling the cascading behaviour of adoption is the
Bass Diffusion Model (Bass, 1969; Grasman&Kornelis, 2019), which distinguishes between
three key elements:

e |Initial adopters: Those who embrace innovations without requiring validation from
others. For instance, a tech-savvy farmer who installs a new soil sensor before it is
widely known.

e Imitating adopters: Those who adopt based on social influence, typically after
observing successful use cases.

e Size of the ecosystem: The total number of targetable actors. For example, all farmers
in a region who could benefit from a given sensor.

Bass diffusion models have also been applied in data ecosystems. Katona et al. (2011) model
diffusion within online networks, showing how local structure, adopter characteristics, and peer
influence—via the degree and clustering effects—shape adoption. Similar dynamics appear
in agri-forestry cooperatives and Living Labs, where peer trust accelerates innovation spread
(Eastwood et al., 2021). Kreng and Tsai (2003) integrate Bass models with activity-based
costing, illustrating how knowledge diffusion impacts enterprise value through past
performance, knowledge investments, and knowledge flows. Recent studies emphasise how
network structure and social learning jointly drive diffusion in agricultural and digital contexts
(Gémez-Limon et al., 2022).
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10.5 Visualization of innovation spread in an

ecosystem

To illustrate the cascading behaviour during the diffusion of an innovation within an ecosystem,

we present a visualization of a hypothetical scenario. Figure 14 shows an innovation spreading

over time in an ecosystem graphically represented as a network. In this network, nodes

represent actors, and edges denote their connections. We assume that all 128 actors in the

ecosystem are targetable and will eventually adopt the innovation.
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Figure 14. Diffusion of Innovation with one initial adopter and 127 imitating adopters
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Our hypothetical process begins with one initial adopter, while the remaining 127 actors are
imitating adopters. From left to right and top to bottom, the figure visualises the step-by-step
diffusion process. At time step t = 1, the initial adopter, marked by a gold arrow in the figure,
adopts the innovation. The graph below the network image tracks the cumulative number of
adopters. At t = 1, only the initial adopter is counted. This adopter is directly connected to five
other actors. Influenced by this connection, these five actors adopt the innovation at t = 2.
They are represented as gold-colored nodes. The total number of adopters then increases to
SiX.

This imitation process continues in subsequent time steps. As more actors adopt the
innovation based on their connections to prior adopters, the diffusion cascades throughout the
network. By t = 15, all targetable actors have adopted the innovation. The accompanying graph
illustrates how this cascading behaviour results in a sigmoidal (S-shaped) adoption curve, a
common pattern in innovation diffusion and product life cycles.

The main messages of this section for the 4Growth project are:

e Recognise that innovation diffusion in ecosystems is often driven by cascading
behaviour, where individual adoption decisions influence others across the
network. This process is shaped by social effects such as peer influence, social
learning, and perceived success, which collectively lower the barriers to
adoption.

e Understand that network effects significantly amplify the value of innovations
as more actors participate, creating self-reinforcing loops of adoption and
improvement. Cooperative agri-platforms are particularly well-positioned to
harness these effects by combining shared data.

¢ Apply models such as the Bass Diffusion Model to analyze the roles of initial
adopters, imitators, and the size of the targetable ecosystem. These models
offer insights into how adoption spreads.
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11 Understanding Barriers and
Leverages in an Ecosystem

Since the 1960s, researchers have developed models to explain why individuals and
organizations adopt or reject innovations. A foundational work is Rogers’ Diffusion of
Innovations theory (1962), which identifies five key attributes influencing adoption: relative
advantage (perceived superiority over existing solutions), compatibility (fit with existing values
and practices), complexity (ease of understanding and use), trialability (ability to experiment
before full adoption), and observability (visibility of benefits). This model has been integrated
theories of individual behavioural change, notably those by Ajzen and Fishbein (1980), who
emphasise attitudes, subjective norms, and perceived behavioural control as key factors to
predict changing behaviour.

Over time, sector-specific adaptations have refined these models. In information technology,
for example, Venkatesh et al. (2003) developed the Unified Theory of Acceptance and Use of
Technology (UTAUT), integrating earlier models to better predict IT adoption behaviour.

Conceptually, the field has broadened beyond motivation to also consider capability and
opportunity. For instance, Michie et al. (2011) synthesised insights from 19 behaviour change
frameworks into the COM-B model, arguing that behaviour (-B) results from interactions
among capability (C), opportunity (O), and motivation (M).

In agriculture and forestry, the combined influence of conceptual extensions and sector-
specific modifications can be observed. Farmers’ and foresters’ adoption decisions may be
influenced by their perceived behavioural control (Dilotsotlhe & Duh, 2021). Technical
capabilities, such as understanding complex digital tools or managing smart farming systems,
may be essential (Eastwood et al., 2021).

Opportunities for adoption may be shaped by external factors such as financial resources and
social environments (Despotovic et al., 2019; Feldman & Pentland, 2003). In addition, local
and professional farming communities provide critical platforms for peer validation, which
facilitates adoption (Rose et al., 2021).

Motivational factors include sector-specific incentives like yield improvements and input
savings (Rose et al., 2021). In addition motivations linked to environmental stewardship,
sustainability, and alignment with cultural or community values are also taken into account
(Kallas et al., 2010; Jansen et al., 2020).

While these insights typically focus on downstream actors, we argue that the same
behavioural, psychological, and contextual dynamics likely apply to upstream actors. For
these actors, capabilities, opportunities, and motivations must also be considered, along with
sector-specific strategic drivers. As Molner et al. (2019) argue, collaboration among upstream
innovators is more likely when it helps clarify the technical core of an innovation, benchmark
market potential, access resources, or align with downstream demand.
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The main messages of this section for the 4Growth project are:

e Understand that innovation adoption is shaped by a combination of
behavioural, psychological, and contextual factors, including capability,
opportunity, and motivation.

o Recognise that adoption barriers and levers vary across the ecosystem and
must be understood in both downstream and upstream contexts. While
downstream actors are often influenced by practical and cultural factors (e.g.,
ease of use, cost savings, sustainability goals), upstream innovators are
motivated by strategic considerations such as clarifying technical value,
benchmarking potential, and aligning with market needs. Both sides require
targeted support to enable ecosystem-wide diffusion.
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12 Innovative Monitoring of an
Ecosystem

12.1 Different methods of innovative
ecosystem monitoring

Innovative monitoring techniques that are designed to analyse raw and processed data from
activities in real time or over time, include automated data extraction through APIs and
advanced text analysis using large language models (LLMs).

APIl-based Data Extraction

APIs offer alternatives to more traditional webscraping, which is often fragile due to the
heterogeneity of website structures. APIs enable systematic, scalable extraction of structured
data, such as weather forecasts, satellite imagery, soil measurements, and pricing information.
Applications include, for example, the Sentinel Hub API provides real-time satellite imagery to
monitor crop health and forest cover dynamics (Claverie et al., 2018), the USDA APIs offer
agricultural data on commodity prices and planting statistics (USDA, 2023). Other applications
include extracting product specifications (e.g., seed varieties, fertilizers) from supplier
websites to track innovations, mining metadata and full-texts from scientific publications (e.g.,
Europe PMC, Crossref) to identify research gaps (Leip et al.,, 2019), and structuring
communications from email archives. For instance, Molner et al. (2019) analysed email
communication systems of a research institute to explore upstream technological orientation.

Large Language Models

Large Language Models (LLMs) can support the processing of extensive textual data in
ecosystems. For example, they can assign sentiment scores to survey responses, news
reports, and regulatory drafts, enabling detection of dissatisfaction, support, or concerns
among actors (Kamilaris & Prenafeta-Boldu, 2018). Current applications include Talkwalker
and Sprout Social (Inc., 2024; Sprout Social, 2024). A more general application is a platforms,
such as YouScan that can also offer predictive insights based on social media activity
(YouScan, 2024). LLMs can also categorise qualitative inputs from ecosystem actors, such as
digiproduct users, digiproducers, etc., such as clustering appraisal results into opportunities
and constraints (Sutherland et al., 2019). Additionally, by analyzing policy documents, project
reports, and scientific articles, LLMs can automatically identify and group relevant
collaborators based on thematic focus areas (e.g., soil health advocacy vs. precision farming
promotion).

Within the 4Growth project, innovative monitoring techniques are developed in Task 2.2 Digital
Agriculture & Forestry Uptake Grid, and disseminated to the observatories via Task 4.2: Data
Collection through Observatories. More precisely, the 4Growth partner VTT has conducted
automated data collection through web-scraping, focusing on forestry sector companies
identified via the Statistical Classification of Economic Activities in the European Community
(NACE) codes. This process involves designing prompts, identifying digital technologies on
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company websites, and transforming selected survey questions into prompts for Al analysis.
Generative Al and Large Language Models are then applied to analyse the scraped content,
yielding insights and lessons that will be further detailed in the upcoming Deliverable 4.8:
Synthesis of Observatory Findings — Draft 1.

12.2 Benefits and drawbacks of innovative
monitoring techniques

Innovative monitoring methods offer many advantages in terms of speed, repeatability, and
independence, but they also pose challenges such as costs, dependence on technology, and
data privacy, which must be addressed for successful and widespread implementation.

Benefits compared to traditional approaches

Al-based methods can help to mitigate survey fatigue, a common issue where respondents
are overwhelmed by frequent or lengthy surveys, leading to low response rates (Sinickas,
2007). Furthermore, the innovative monitoring techniques can save time and are easy to
replicate over multiple years, making it easier to track long-term trends. Additionally, these
techniques allow for real-time or near-real-time data collection, providing quicker insights
compared to surveys, which often take time to gather, process, and analyse. They also avoid
issues related to low response rates, which often require extra time and effort to gather
sufficient data in survey-based methods. Furthermore, innovative monitoring allows for the
entire ecosystem to be monitored rather than relying on a sample, increasing the accuracy
and comprehensiveness of the analysis.

Drawbacks compared to traditional approaches

These relatively new methods, however, also have several drawbacks compared to classical
techniques such as surveys. For instance, the setup costs of advanced monitoring techniques
are often higher than those of classical methods like a survey. A survey can be relatively easily
set up without requiring too much technical knowledge, whereas advanced monitoring
generally requires technical expertise (Culotta and Cutler, 2016). Additionally, these methods
are highly dependent on technological infrastructure and involve a certain level of complexity
in management. While these methods can collect vast amounts of data from various sources,
the integration, processing, and analysis of this data can sometimes be complex (Kinne and
Lenz, 2021). Furthermore, the use of automated Al-driven monitoring can raise ethical
concerns. Issues such as consent, oversight, or the use of personal data within these
technologies can also arise.

12.3 Top-down and bottom-up monitoring

In this study, we distinguish between two types of ecosystem monitoring, namely, top down
and bottom up.
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Top-down monitoring

Top-down ecosystem monitoring is characterised by its macro-level approach, focusing on
highly aggregated data. An example of a top-down monitoring approach is macroeconomic
modelling using aggregated ecosystem statistics (Rahimi & Sheffrin, 2003). This approach
allows ecosystem monitoring with relatively low data intensity at low levels of detail, often
available from open-source platforms where country-level sector statistics are reported.

Bottom-up monitoring

In contrast, bottom-up monitoring is a micro-level approach, focusing on individuals or firms,
and requires vastly more difficult to obtain data at a rather high level of detail. Examples of
bottom-up monitoring include surveys, analyzing company sales, and collecting user metrics
(Bowen & Chen, 2001; Viswanathan, Sridharan, Ritchie, Venugopal, & Jung, 2012). This
approach can be effective in obtaining a deeper understanding of why a certain technology is
or is not adopted. It also allows explaining the possible heterogeneity of adoption, such as
differences between gender, cultural values, and education. However, bottom-up approaches
can be costly due to their time-consuming data collection aspect (Vreuls, Thomas, & Broc,
2009).

Combining top-down and bottom-up

Combining top-down and bottom-up methods can provide a more comprehensive and
accurate ecosystem analysis by cross-validating macro and micro perspectives (Rivers &
Jaccard, 2005). For example, a comprehensive customer survey (bottom-up) can be
combined with macroeconomic modelling (top-down) to obtain a more complete picture of
actual ecosystem dynamics. Thus, these different perspectives can be good complements to
each other. The ingestion of both individual survey-level data and macroeconomic into
4Growth’s Ecosystem Monitoring and Forecasting Tool (MMFT) is an example of this hybrid
approach.

The main messages of this section for the 4Growth project are:

e Recognise that innovative monitoring techniques, such as APl-based data
extraction and large language models (LLMs), enable comprehensive and
scalable analysis of digital ecosystems.

e Acknowledge that while these techniques offer significant benefits, including
reduced survey fatigue, faster trend detection, and broader coverage, they
also come with challenges. These include higher setup costs, technical
complexity, and ethical concerns related to data privacy, consent, and
transparency.

e Understand that innovative monitoring can follow either top-down or bottom-
up approaches, each with specific advantages and trade-offs. Top-down
methods provide high-level, aggregated insights using macro data, whereas
bottom-up approaches yield detailed, actor-specific understanding but require
more resource-intensive data collection.
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13 Forecasting Adoption and
Collaboration in an Ecosystem

One of the challenges in innovation management is forecasting the adoption or collaboration
of innovations before their usage data becomes available. However, by combining intention-
based data, analogical reasoning, and cross-ecosystem analysis, it is possible to make
informed predictions about future adoption and collaboration patterns (Bass, 2001).

Estimating the potential size of an ecosystem often begins with intention surveys, which ask
prospective users about their likelihood of adopting a given innovation. While such self-
reported measures are imperfect, they serve as early indicators of market interest and can
guide strategic planning.

To predict the pace of adoption or collaboration, analogical reasoning is often employed. This
involves comparing the current innovation to similar technologies introduced in the past and
drawing parallels in terms of adoption speed.

A distinctive feature of digital and data-driven innovations is their embeddedness in both
digiproduct and data ecosystems. This dual presence enables cross-ecosystem inference. For
example, hardware adoption can be used as a proxy for estimating platform engagement in
associated data services. Conversely, usage patterns in data platforms, such as dashboard
interactions or API calls, may reveal constraints or accelerators that shape future digiproduct
adoption.

The main message of this section for the 4Growth project is:

¢ Understand that forecasting adoption and collaboration in digital ecosystems can
be approached by combining intention surveys, analogical reasoning, and cross-
ecosystem analysis to predict innovation uptake before usage data becomes
available.
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14 Conclusion

This study for the 4Growth project proposes that leveraging the concept of digital ecosystems
offers a substantially more effective framework for analyzing the uptake of digital and data-
driven innovations in agriculture and forestry than traditional market-based models. Digital
ecosystems encompass a diverse and interconnected network of actors and subsystems,
including both digiproduct ecosystems (centered on digitalised tools and services) and data
ecosystems (focused on the generation and use of data to create value). Recognizing these
overlapping structures helps us better understand how value is created, exchanged, and
regulated within increasingly complex innovation environments.

One key contribution of this study is the expansion of the actor landscape. Adoption dynamics
are not limited to digiproducers and digiproduct users but include collaborators, data
intermediaries, and peripheral data users. The concept of social data externalities further
underscores why innovation impacts extend far beyond direct users. Data generated by one
actor often influences others in unforeseen ways, reinforcing the idea that digital and data-
driven solutions have ecosystem-wide effects that go beyond merely serving individual user
needs.

We introduced the concept of ecosystem space to describe the networked environment in
which digital innovation unfolds. This space is dynamic, reflecting the shifting roles,
relationships, and interactions among actors as innovations evolve across the product life
cycle. Within this space, actors engage in ecosystem scoping, i.e. strategic activities through
which they define their position, identify collaborators, and shape their value propositions.
Unlike traditional market scoping, ecosystem scoping includes non-monetary dimensions such
as access to data, knowledge, and influence. Importantly, ecosystem scoping is actor-specific:
different actors perceive and engage with the ecosystem according to their goals, resources,
and constraints. This diversity calls for flexible policy instruments that support varied
engagement strategies.

To enhance engagement planning, we introduced the PARATA principle, an adaptation of the
TAM-SAM-SOM model tailored to ecosystem contexts. By distinguishing between Potential
Actors (PA), Relevant Actors (RA), and Targetable Actors (TA), the PARATA model helps clarify
who could be involved, who should be involved, and who can realistically be influenced or
supported. Within the targetable segment, distinguishing between innovating actors, who
initiate and co-develop solutions, and imitating actors, who follow based on peer behaviour, is
essential for shaping adoption strategies. Moreover, recognizing that actors may shift roles
over time, such as moving from peripheral data user to active collaborator, adds further
complexity to adoption forecasting and engagement planning.

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 37



ull I 4 G rOWt h D2.8 — Analysis of Innovative Approaches to Market Monitoring — Draft 1

References

Adner, R. (2006). Match your innovation strategy to your innovation ecosystem. Harvard
Business Review, 84(4), 98-107. https://hbr.org/2006/04/match-your-innovation-strategy-to-
your-innovation-ecosystem

Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes
toward precision agriculture technologies. Computers and Electronics in Agriculture, 48(3),
256-271. https://doi.org/10.1016/j.compag.2005.04.004

AgriDataSpace. (2024). Building a European framework for the secure and trusted data
space for agriculture. (2024). https://agridataspace-csa.eu/wp-
content/uploads/2024/09/AGRIDATA-SPACE-FINAL-BROCHURE.pdf

Allen, G. J. (2022). Concepturealize™: A new contribution to generate real-needs-focussed,
user-centred, lean business models. Journal of innovation and entrepreneurship, 11(1), 6.

Aral, S., & Walker, D. (2012). Identifying influential and susceptible members of social
networks. Science, 337(6092), 337—-341. https://doi.org/10.1126/science. 1215842

Bass, F. M. (1969). A new product growth for model consumer durables. Management
Science, 15(5), 215-227. https://doi.org/10.1287/mnsc.15.5.215

(
Bass, F. M. (2004). A new product growth for model consumer durables. Management
Science, 50(12_supplement), 1825-1832. https://doi.org/10.1287/mnsc.1040.0264

Bass, F. M., Gordon, K., Ferguson, T. L., & Githens, M. L. (2001). DIRECTV: Forecasting
diffusion of a new technology prior to product launch. Interfaces, 31(3_supplement), S82—
S93.

Bergemann, D., Bonatti, A., & Gan, T. (2021). The economics of social data. The RAND
Journal of Economics, 52(3), 555-584. htips://doi.org/10.1111/1756-2171.12407

Bowen, J. T., & Chen, S.-L. (2001). The relationship between customer loyalty and customer
satisfaction. International Journal of Contemporary Hospitality Management, 13(5), 213-217.
https://doi.org/10.1108/09596 110110395893

Briscoe, G., & De Wilde, P. (2006). Digital ecosystems: Evolving service-oriented
architectures. In Proceedings of the 1st International Conference on Bio-Inspired Models of
Network, Information and Computing Systems (pp. 1-6). IEEE.
http://dx.doi.org/10.1109/BIMNICS.2006.361817

Bronson, K., & Knezevic, I. (2016). Big data in food and agriculture. Big Data & Society, 3(1),
1-5. https://doi.org/10.1177/2053951716648174

Brynjolfsson, E., & Hitt, L. M. (1998). Beyond the productivity paradox. Communications of
the ACM, 41(8), 49-55. htips://doi.org/10.1145/280324.280332

Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern
productivity paradox: A clash of expectations and statistics (NBER Working Paper No.
24001). National Bureau of Economic Research. https://doi.org/10.3386/w24001

Caffaro, F., Micheletti Cremasco, M., Roccato, M., & Cavallo, E. (2020). Drivers of farmers’
intention to adopt technological innovations in Italy: The role of information sources,
perceived usefulness, and perceived ease of use. Journal of Rural Studies, 76, 264-271.
https://doi.org/10.1016/].jrurstud.2020.04.028

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 38


https://hbr.org/2006/04/match-your-innovation-strategy-to-your-innovation-ecosystem
https://hbr.org/2006/04/match-your-innovation-strategy-to-your-innovation-ecosystem
https://doi.org/10.1016/j.compag.2005.04.004
https://agridataspace-csa.eu/wp-content/uploads/2024/09/AGRIDATA-SPACE-FINAL-BROCHURE.pdf
https://agridataspace-csa.eu/wp-content/uploads/2024/09/AGRIDATA-SPACE-FINAL-BROCHURE.pdf
https://doi.org/10.1126/science.1215842
https://doi.org/10.1287/mnsc.15.5.215
https://doi.org/10.1287/mnsc.1040.0264
https://doi.org/10.1111/1756-2171.12407
https://doi.org/10.1108/09596110110395893
http://dx.doi.org/10.1109/BIMNICS.2006.361817
https://doi.org/10.1177/2053951716648174
https://doi.org/10.1145/280324.280332
https://doi.org/10.3386/w24001
https://doi.org/10.1016/j.jrurstud.2020.04.028

ull I 4 G rOWt h D2.8 — Analysis of Innovative Approaches to Market Monitoring — Draft 1

Caffaro, F., Roccato, M., Micheletti Cremasco, M., & Cavallo, E. (2019). An ergonomic
approach to sustainable development: The role of information environment and social-
psychological variables in the adoption of agri-environmental innovations. Sustainable
Development, 27(6), 1049—-1062. https://doi.org/10.1002/sd.1956

Cai, Y., Liu, Q., Gan, Y., Li, C., Liu, X,, Lin, R., & JiayeYang, J. (2024). Predicting the
unpredictable: Uncertainty-aware reasoning over temporal knowledge graphs via diffusion
process. In Findings of the Association for Computational Linguistics ACL 2024 (pp. 5766—
5778).

Carbonell, I. M. (2016). The ethics of big data in big agriculture. Internet Policy Review, 5(1).
https://doi.org/10.14763/2016.1.405

Centola, D. (2010). The spread of behaviour in an online social network experiment.
Science, 329(5996), 1194—-1197. https://doi.org/10.1126/science.1185231

Centola, D., Becker, J., Brackbill, D., & Baronchelli, A. (2018). Experimental evidence for
tipping points in social convention. Science, 360(6393), 1116—1119.
https://doi.org/10.1126/science.aas8827

Chamen, T. (2015). Controlled traffic farming — From worldwide research to adoption in
Europe and its future prospects. Acta Technologica Agriculturae, 18(3), 64—73.
https://doi.org/10.1515/ata-2015-0013

Chen, X., Zhou, F.,, Zhang, K., Trajcevski, G., Zhong, T., & Zhang, F. (2019). Information
diffusion prediction via recurrent cascades convolution. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE) (pp. 770-781). IEEE.
https://doi.org/10.1109/ICDE.2019.00074

Cheung, C. M. K., & Thadani, D. R. (2010). The effectiveness of electronic word-of-mouth
communication: A literature analysis. In Bled eConference (pp. 329-345).
http://dx.doi.org/10.1016/j.dss.2012.06.008

Choi, G., Nam, C., & Kim, S. (2019). The impacts of technology platform openness on
application developers’ intention to continuously use a platform: From an ecosystem
perspective. Telecommunications Policy, 43(2), 140-153.

Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., & Justice, C. O. (2018). The
harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of
Environment, 219, 145-161. https://doi.org/10.1016/j.rse.2018.09.002

Cooper, B., & Vlaskovits, P. (2010). The entrepreneur’s guide to customer development: A
cheat sheet to the four steps to the epiphany. CustDev.

Cowan, R., Jonard, N., & Zimmermann, J. B. (2005). Network models of innovation and
knowledge diffusion. In S. Breschi & F. Malerba (Eds.), Clusters, networks and innovation
(pp. 29-53). Oxford University Press.

Dahlke, J., Beck, M., Kinne, J., Lenz, D., Dehghan, R., Woérter, M., & Ebersberger, B. (2024).
Epidemic effects in the diffusion of emerging digital technologies: Evidence from artificial
intelligence adoption. Research Policy, 53(2), 104917.
https://doi.org/10.1016/j.respol.2023.104917

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 39


https://doi.org/10.1002/sd.1956
https://doi.org/10.14763/2016.1.405
https://doi.org/10.1126/science.1185231
https://doi.org/10.1126/science.aas8827
https://doi.org/10.1515/ata-2015-0013
https://doi.org/10.1109/ICDE.2019.00074
http://dx.doi.org/10.1016/j.dss.2012.06.008
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.1016/j.respol.2023.104917
https://doi.org/10.2307/249008

ull I 4 G rOWt h D2.8 — Analysis of Innovative Approaches to Market Monitoring — Draft 1

Despotovi¢, J., Rodic¢, V., & Caracciolo, F. (2019). Factors affecting farmers’ adoption of
integrated pest management in Serbia: An application of the theory of planned behaviour.
Journal of Cleaner Production, 228, 1196—1205. https://doi.org/10.1016/].jclepro.2019.04.149

Dilotsotlhe, N., & Duh, H. I. (2021). Drivers of middle-class consumers’ green appliance
attitude and purchase behaviour: A multi-theory application. Social Marketing Quarterly,
27(2), 150-171. https://doi.org/10.1177/15245004211013737

Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a
highly connected world. Cambridge University Press.
https://doi.org/10.1017/CBO9780511761942

Eastwood, C., Ayre, M., Nettle, R., & Dela Rue, B. (2019). Making sense in the cloud: Farm
advisory services in a smart farming future. NJAS: Wageningen Journal of Life Sciences,
90-91, 100298. https://doi.org/10.1016/j.njas.2019.100298

Eastwood, C., Klerkx, L., Ayre, M., & Dela Rue, B. (2019). Managing socio-ethical
challenges in the development of smart farming: From a fragmented to a comprehensive
approach for responsible innovation. Journal of Agricultural and Environmental Ethics, 32(5—
6), 741-768. https://doi.org/10.1007/s10806-017-9704-5

Farrell, J., & Saloner, G. (1985). Standardization, compatibility, and innovation. The RAND
Journal of Economics, 16(1), 70-83. https://doi.org/10.2307/2555589

Farrell, J., & Saloner, G. (1986). Installed base and compatibility: Innovation, product
preannouncements, and predation. The American Economic Review, 76(5), 940—955.

Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behaviour: An introduction to
theory and research. Addison-Wesley.

Ganeshkumar, C., Jena, S. K., Sivakumar, A., & Nambirajan, T. (2023). Artificial intelligence
in agricultural value chain: Review and future directions. Journal of Agribusiness in
Developing and Emerging Economies, 13(3), 379-398. https://doi.org/10.1108/JADEE-12-
2021-0305

Grasman, J., & Kornelis, M. (2019). Forecasting product sales with a stochastic Bass model.
Journal of Mathematics in Industry, 9, 1-10. https://doi.org/10.1186/s13362-019-0061-7

Heinz, D., Benz, C., Fassnacht, M. K., & Satzger, G. (2022). Past, present and future of data
ecosystems research: A systematic literature review. In Proceedings of the 26th Pacific Asia
Conference on Information Systems (PACIS 2022) (pp. 1-17). Association for Information
Systems. http://dx.doi.org/10.5445/IR/1000148750

Hoek, A. C., Malekpour, S., Raven, R., Court, E., & Byrne, E. (2021). Towards
environmentally sustainable food systems: Decision-making factors in sustainable food
production and consumption. Sustainable Production and Consumption, 26, 610—626.
https://doi.org/10.1016/j.spc.2020.12.009

Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in
marketing. Journal of the Academy of Marketing Science, 49, 30-50.
https://doi.org/10.1007/s11747-020-00754-z

lyengar, R., Van den Bulte, C., & Valente, T. W. (2011). Opinion leadership and social
contagion in new product diffusion. Marketing Science, 30(2), 195-212.
https://doi.org/10.1287/mksc.1100.0566

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 40


https://doi.org/10.1016/j.jclepro.2019.04.149
https://doi.org/10.1177/15245004211013737
https://doi.org/10.1017/CBO9780511761942
https://doi.org/10.1016/j.njas.2019.100298
https://doi.org/10.1007/s10806-017-9704-5
https://doi.org/10.2307/2555589
https://doi.org/10.1108/JADEE-12-2021-0305
https://doi.org/10.1108/JADEE-12-2021-0305
https://doi.org/10.1186/s13362-019-0061-7
http://dx.doi.org/10.5445/IR/1000148750
https://doi.org/10.1016/j.spc.2020.12.009
https://doi.org/10.1007/s11747-020-00754-z
https://doi.org/10.1287/mksc.1100.0566

ull I 4 G rOWt h D2.8 — Analysis of Innovative Approaches to Market Monitoring — Draft 1

Jacobides, M. G., Cennamo, C., & Gawer, A. (2018). Towards a theory of ecosystems.
Strategic Management Journal, 39(8), 2255—-2276. https://doi.org/10.1002/smj.2904

Kallas, Z., Serra, T., & Gil, J. M. (2010). Farmers’ objectives as determinants of organic
farming adoption: The case of Catalonian vineyard production. Agricultural Economics,
41(5), 409-423. https://doi.org/10.1111/j.1574-0862.2010.00454 .x

Kamilaris, A., & Prenafeta-Boldu, F. X. (2018). Deep learning in agriculture: A survey.
Computers and Electronics in Agriculture, 147, 70-90.
https://doi.org/10.1016/j.compag.2018.02.016

Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldu, F. X. (2017). A review on the practice of big
data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37.
https://doi.org/10.1016/j.compag.2017.09.037

Katona, Z., Zubcsek, P. P., & Sarvary, M. (2011). Network effects and personal influences:
Diffusion of an online social network. Journal of Marketing Research, 48(3), 425-443.
https://doi.org/10.1509/imkr.48.3.425

Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. The
American Economic Review, 75(3), 424—440.

Katz, M. L., & Shapiro, C. (1986). Technology adoption in the presence of network
externalities. Journal of Political Economy, 94(4), 822—-841. https://doi.org/10.1086/261409

Kinne, J., & Lenz, D. (2021). Predicting innovative firms using web mining and deep
learning. PLOS ONE, 16(4), e0249071. https://doi.org/10.1371/journal.pone.0249071

Klerkx, L., & Begemann, S. (2020). Supporting food systems transformation: The what, why,
who, where and how of mission-oriented agricultural innovation systems. Agricultural
Systems, 184, 102901. https://doi.org/10.1016/j.agsy.2020.102901

Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture,
smart farming and agri-food innovation networks. NJAS—Wageningen Journal of Life
Sciences, 90-91, 100315. https://doi.org/10.1016/j.njas.2019.100315

Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson.

Kumar, N., Scheer, L. K., & Steenkamp, J.-B. E. M. (1995). The effects of supplier fairness
on vulnerable resellers. Journal of Marketing Research, 32(1), 54-65.
https://doi.org/10.1177/002224379503200107

Labarthe, P. (2009). Extension services and multifunctional agriculture: Lessons learnt from
the French and Dutch contexts and approaches. Journal of Environmental Management,
90(Supplement 2), S193-S202. https://doi.org/10.1016/j.,envman.2008.11.021

Lajoie-O’Malley, A., Bronson, K., Van Der Burg, S., & Klerkx, L. (2020). The future(s) of
digital agriculture and sustainable food systems: An analysis of high-level policy documents.
Ecosystem Services, 45, 101183. https://doi.org/10.1016/j.ecoser.2020.101183

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in
agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674

Lindgren, P. (2022). The business model ecosystem approach. In The business model
ecosystem. Routledge. https://doi.org/10.1201/9781003339755-7

Lnenicka, M., Nikiforova, A., Luterek, M., Milic, P., Rudmark, D., Neumaier, S., Kevi¢, K.,
Zuiderwijk, A., & Rodriguez Bolivar, M. P. (2024). Understanding the development of public

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 41


https://doi.org/10.1002/smj.2904
https://doi.org/10.1111/j.1574-0862.2010.00454.x
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2017.09.037
https://doi.org/10.1509/jmkr.48.3.425
https://doi.org/10.1086/261409
https://doi.org/10.1371/journal.pone.0249071
https://doi.org/10.1016/j.agsy.2020.102901
https://doi.org/10.1016/j.njas.2019.100315
https://doi.org/10.1177/002224379503200107
https://doi.org/10.1016/j.jenvman.2008.11.021
https://doi.org/10.1016/j.ecoser.2020.101183
https://doi.org/10.3390/s18082674
https://doi.org/10.1201/9781003339755-7

ull I 4 G rOWt h D2.8 — Analysis of Innovative Approaches to Market Monitoring — Draft 1

data ecosystems: From a conceptual model to a six-generation model of the evolution of
public data ecosystems. Telematics and Informatics, 94, 102190.
https://doi.org/10.1016/j.tele.2024.102190

Lucas Jr, H. C., Ginzberg, M. J., & Schultz, R. L. (1990). Information systems
implementation: Testing a structural model. Ablex Publishing.

Mankins, J. C. (1995). Technology readiness levels. NASA Office of Space Access and
Technology. https://www.nasa.gov/pdf/458490main_TRL Definitions.pdf

Mariano, M. J., Villano, R., & Fleming, E. (2012). Factors influencing farmers’ adoption of
modern rice technologies and good management practices in the Philippines. Agricultural
Systems, 110, 41-53. https://doi.org/10.1016/j.agsy.2012.03.010

Mele, A. (2017). A structural model of dense network formation. Econometrica, 85(3), 825—
850. https://doi.org/10.3982/ECTA13182

Michie, S., Atkins, L., & Gainforth, H. L. (2016). Changing behaviour to improve clinical
practice and policy. In Novos Desafios, Novas Competéncias: Contributos Atuais da
Psicologia (pp. 41-60). Axioma-Publicagbes da Faculdade de Filosofia.

Molner, S., Prabhu, J. C., & Yadav, M. S. (2019). Lost in a universe of markets: Toward a
theory of market scoping for early-stage technologies. Journal of Marketing, 83(2), 37-61.
https://doi.org/10.1177/0022242918821225

Moore, J. F. (1996). The death of competition: Leadership and strategy in the age of
business ecosystems. HarperBusiness.

Nachira, F., Dini, P., & Nicolai, A. (2007). A network of digital business ecosystems for
Europe: Roots, processes and perspectives. European Commission.
http://temp.uefiscdi.ro/EDIGIREGION/DigitalBusinessEcosystems-2007.pdf

OECD. (2017). Fostering innovation in the public sector. OECD Publishing.
https://doi.org/10.1787/9789264270879-en

OECD. (2019). Digital opportunities for better agricultural policies. OECD Publishing.
https://doi.org/10.1787/571a0812-en

Oliveira, R. C. de., & Silva, R. D. da S. e. (2023). Artificial intelligence in agriculture: Benefits,
challenges, and trends. Applied Sciences, 13(13), 7405.
https://doi.org/10.3390/app13137405

Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological
systems. Science, 325(5939), 419-422. https://doi.org/10.1126/science.1172133

Pawase, P. P., Nalawade, S. M., Bhanage, G. B., Walunj, A. A., Kadam, P. B., Durgude, A.
G., & Patil, M. R. (2023). Variable rate fertilizer application technology for nutrient
management: A review. International Journal of Agricultural and Biological Engineering,
16(4), 11-19. https://doi.org/10.25165/}.ijabe.20231604.767 1

Pedersen, S. M., Fountas, S., Sgrensen, C. G., Van Evert, F. K., & Blackmore, B. S. (2017).
Robotic seeding: Economic perspectives. In S. Pedersen & K. Lind (Eds.), Precision
agriculture: Technology and economic perspectives. Springer. https://doi.org/10.1007/978-3-
319-68715-5_8

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 42


https://doi.org/10.1016/j.tele.2024.102190
https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf
https://doi.org/10.1016/j.agsy.2012.03.010
https://doi.org/10.3982/ECTA13182
https://doi.org/10.1177/0022242918821225
http://temp.uefiscdi.ro/EDIGIREGION/DigitalBusinessEcosystems-2007.pdf
https://doi.org/10.1787/9789264270879-en
https://doi.org/10.1787/571a0812-en
https://doi.org/10.3390/app13137405
https://doi.org/10.1126/science.1172133
https://doi.org/10.25165/j.ijabe.20231604.7671
https://doi.org/10.1007/978-3-319-68715-5_8
https://doi.org/10.1007/978-3-319-68715-5_8

ull I 4 G rOWt h D2.8 — Analysis of Innovative Approaches to Market Monitoring — Draft 1

Perea, R. G., Poyato, E. C., Montesinos, P., & Diaz, J. R. (2019). Prediction of irrigation
event occurrence at farm level using optimal decision trees. Computers and electronics in
agriculture, 157, 173-180.

Pradhananga, A. K., & Davenport, M. A. (2019). Predicting farmer adoption of water
conservation practices using a norm-based moral obligation model. Environmental
Management, 64(4), 483—-496. https://doi.org/10.1007/s00267-019-01186-3

Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., & Vaccari,
F. P. (2012). Aflexible unmanned aerial vehicle for precision agriculture. Precision
Agriculture, 13(4), 517-523. https://doi.org/10.1007/s11119-012-9257-6

Raff, S., Wentzel, D., & Obwegeser, N. (2020). Smart products: Conceptualizing the
characteristics of digitalization in products. Electronic Markets, 30(1), 75-86.
http://dx.doi.org/10.1111/jpim.12544

Rahimi, A., & Sheffrin, A. Y. (2003). Effective market monitoring in deregulated electricity
markets. IEEE Transactions on Power Systems, 18(2), 486—493.
https://doi.org/10.1109/TPWRS.2003.810680

Rivers, N., & Jaccard, M. (2005). Combining top-down and bottom-up approaches to energy-
economy modeling using discrete choice methods. The Energy Journal, 26(1), 83—-106.
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol26-No1-4

Rogers, E. M. (1962). Diffusion of innovations. Free Press of Glencoe.
RootWave. (2023). RootWave Pro. https://rootwave.com/pro/

Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M., ... & Fraser, E. D. G.
(2019). Automated pastures and the digital divide: How agricultural technologies are shaping
labour and rural communities. Journal of Rural Studies, 68, 112-122.
https://doi.org/10.1016/].jrurstud.2019.01.023

Ryan, B., & Gross, N. C. (1950). The acceptance and diffusion of hybrid corn seed in two
lowa communities.
https://didawiki.cli.di.unipi.it/lib/exe/fetch.php/wma/agricultural research bulletin-v029-

b372.pdf

Schultz, D. P, & Slevin, R. L. (1975). Implementing operations research/management
science. American Elsevier Publishing Co.

Shamshiri, R. R., Weltzien, C., Hameed, I. A., Yule, I. J., Grift, T. E., Balasundram, S. K.,
Pitonakova, L., Ahmad, D., Chowdhary, G. (2018). Research and development in agricultural
robotics: A perspective of digital farming. Biosystems Engineering, 165, 34-50.
https://doi.org/10.25165/j.ijabe.20181104.4278

Similarweb. (2024). Similarweb. https://www.similarweb.com/

Sinickas, A. (2007). Finding a cure for survey fatigue. Strategic Communication
Management, 11(2), 11. https://www.sinicom.com/wp-content/uploads/2018/03/article93.pdf

Solow, R. M. (1987, July 12). We’d better watch out. The New York Times Book Review, 36.

Sprout Social. (2024). Sprout Social. https://www.sproutsocial.com/

Sutherland, L. A., Burton, R. J. F,, Ingram, J., Blackstock, K. L., Slee, B., & Gotts, N. (2019).
Triggering change: Towards a conceptualisation of major change processes in farm decision-
making. Land Use Policy, 79, 224-236. https://doi.org/10.1016/j.jenvman.2012.03.013

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 43


https://doi.org/10.1007/s00267-019-01186-3
https://doi.org/10.1007/s11119-012-9257-6
http://dx.doi.org/10.1111/jpim.12544
https://doi.org/10.1109/TPWRS.2003.810680
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol26-No1-4
https://rootwave.com/pro/
https://doi.org/10.1016/j.jrurstud.2019.01.023
https://didawiki.cli.di.unipi.it/lib/exe/fetch.php/wma/agricultural_research_bulletin-v029-b372.pdf
https://didawiki.cli.di.unipi.it/lib/exe/fetch.php/wma/agricultural_research_bulletin-v029-b372.pdf
https://doi.org/10.25165/j.ijabe.20181104.4278
https://www.similarweb.com/
https://www.sinicom.com/wp-content/uploads/2018/03/article93.pdf
https://www.sproutsocial.com/
https://doi.org/10.1016/j.jenvman.2012.03.013

ull I 4 G rOWt h D2.8 — Analysis of Innovative Approaches to Market Monitoring — Draft 1

Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning,
51(1), 40—49. https://doi.org/10.1016/j.Irp.2017.06.007

USDA. (2023). USDA Open Data Catalog. https://data.nal.usda.gov/

Valente, T. W. (2012). Network interventions. Science, 337(6090), 49-53.
https://doi.org/10.1126/science.1217330

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of
information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
https://doi.org/10.2307/30036540

Vreuls, H., Thomas, S., & Broc, J.-S. (2009). General bottom-up data collection, monitoring,
and calculation methods. Wuppertal Institute for Climate, Environment and Energy.

Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Smart farming is key to developing
sustainable agriculture. Proceedings of the National Academy of Sciences, 114(24), 6148—
6150. hitps://doi.org/10.1073/pnas.1707462114

White, J. C., Wulder, M. A., Varhola, A., Vastaranta, M., Coops, N. C., Cook, B. D., Pitt, D., &
Woods, M. (2016). A best practices guide for generating forest inventory attributes from
airborne laser scanning data using an area-based approach. Forestry Chronicle, 92(2), 122—
133. https://doi.org/10.5558/tfc2013-132

Wilkins, J., Van Wegen, B., & De Hoog, R. (1997). Understanding and valuing knowledge
assets: Overview and method. Expert Systems with Applications, 13(1), 55-72.
https://doi.org/10.1016/S0957-4174(97)00022-5

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming — A
review. Agricultural Systems, 153, 69-80. hitps://doi.org/10.1016/j.agsy.2017.01.009

YouScan. (2024). YouScan. htips://youscan.io/

Yu, F., El-Zaatari, H. M., Kosorok, M. R., Carnegie, A., & Dave, G. (2024). The application of
exponential random graph models to collaboration networks in biomedical and health
sciences: A review. Network Modeling Analysis in Health Informatics and Bioinformatics,
13(1), 5. https://doi.org/10.1007/s13721-023-00439-w

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for
precision agriculture: A review. Precision Agriculture, 13(6), 693-712.
https://doi.org/10.1007/s11119-012-9274-5

I AGAH®BG] WYEY YOE! [ WHEBLY N 7Y 4Bk 1 I WP E [ Y XK 44


https://doi.org/10.1016/j.lrp.2017.06.007
https://data.nal.usda.gov/
https://doi.org/10.1126/science.1217330
https://doi.org/10.2307/30036540
https://doi.org/10.1073/pnas.1707462114
https://doi.org/10.5558/tfc2013-132
https://doi.org/10.1016/S0957-4174(97)00022-5
https://doi.org/10.1016/j.agsy.2017.01.009
https://youscan.io/
https://doi.org/10.1007/s13721-023-00439-w
https://doi.org/10.1007/s11119-012-9274-5

	Executive Summary
	1 Introduction
	2 The Digital Ecosystem
	3 Actors in the Digital Ecosystem
	4 Social Data Externalities in the Digital Ecosystem
	5 Subsystems of the Digital Ecosystem
	5.1 The digiproduct and data ecosystems
	5.2 Upstream and downstream ecosystems
	6 The Ecosystem Space
	7 Operationalization of Ecosystem Scoping
	8 Illustrations of Digital Ecosystem Spaces in Agri-Forestry
	8.1 Bridging upstream and downstream in the digiproduct ecosystem
	8.2 Bridging upstream and downstream in the data ecosystem
	8.3 Bridging upstream in digiproduct and data ecosystems
	8.4 Bridging downstream in digiproduct and data ecosystems
	9  Along the Product Life Cycle
	10 How Innovation spreads in an Ecosystem
	10.1 Cascading behaviour
	10.2 Social effects
	10.3 Network effects
	10.4 Bass diffusion model
	10.5 Visualization of innovation spread in an ecosystem
	11 Understanding Barriers and Leverages in an Ecosystem
	12 Innovative Monitoring of an Ecosystem
	12.1 Different methods of innovative ecosystem monitoring
	12.2 Benefits and drawbacks of innovative monitoring techniques
	12.3 Top-down and bottom-up monitoring
	13 Forecasting Adoption and Collaboration in an Ecosystem
	14 Conclusion

	References

